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Abstract 
Geographic access to isolated ecosystems is an important catalyst of adaptive radiation. Cichlid fishes repeatedly colonized rift, crater, and volca-
nic lakes from surrounding rivers. We test the “lake effect” on the phenotypic rate and state across 253 cichlid species. The rate of evolution was 
consistently higher (~10-fold) in lakes, and consistent across different dimensions of the phenotype. Rate shifts tended to occur coincident with 
or immediately following river-to-lake transitions, generally resulting in 2- to 5-fold faster rates than in the founding riverine lineage. By contrast, 
river- and lake-dwelling cichlids exhibit considerable overlap in phenotypes, generally with less disparity in lakes, but often different evolutionary 
optima. Taken together, these results suggest that lake radiations rapidly expand into niches largely already represented by ancestral riverine 
lineages, albeit in different frequencies. Lakes may provide ecological opportunity via ecological release (e.g., from predators/competitors) but 
need not be coupled with access to novel ecological niches.
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Introduction
Geographic setting plays a key role in shaping the evolution-
ary trajectories of organisms and the lineages in which they 
arise (Schluter, 1996a, 1988; Losos & Ricklefs, 2009; Stroud 
& Losos, 2016). Colonization of a new environment is often 
a critical precursor to adaptive radiation (Gavrilets & Losos, 
2009; Schluter, 2000; Simpson, 1953; Stroud & Losos, 2016). 
Islands, for example, provide release from competition and 
predation, as well as enhanced access to novel resources, in 
turn promoting rapid phenotypic specialization (Schluter, 
1988, 2000). Indeed, many of the most conspicuous adaptive 
radiations are found on islands, including Darwin’s Galápagos 
finches (Grant & Grant, 2008; Lack, 1947), Hawai’ian hon-
eycreepers (Lerner et al., 2011; Lovette et al., 2002) and stick 
spiders (Gillespie et al., 2018), Malagasy vangas (Jønsson et 
al., 2012), and Caribbean anole lizards (Losos, 2009). Lakes 
are analogous to islands in the aquatic realm and also host 
many conspicuous adaptive radiations, including East African 
cichlids (Seehausen, 2006), Ethiopian barbs (de Graaf et al., 
2008), and Indonesian silversides (Pfaender et al., 2016).

Diversification in insular environments is particularly pro-
lific in cichlids: riverine lineages have repeatedly colonized 
isolated lakes and produced some of the most striking exam-
ples of adaptive radiation (Seehausen, 2006, 2015). Perhaps 
most recognizable among these are the species-rich assem-
blages of Lakes Tanganyika, Malawi, and Victoria (Joyce et 
al., 2011; Meier et al., 2017; Ronco et al., 2021), but several 
notable radiations also occur in myriad smaller lakes through-
out Africa (Martin et al., 2015; Meier et al., 2019; Schliewen 
et al., 2001; Wagner et al., 2012) and Middle America 

(Barluenga et al., 2006; Elmer et al., 2010, 2014; Kautt et 
al., 2016). Geographic transitions generally lead to speciation 
(Seehausen, 2006). An underappreciated facet of this spe-
ciation process is the heterogeneity in its timing: whereas in 
some cases, speciation rapidly follows habitat transition, in 
others, it involves some period of evolutionary lag (Burress 
& Tan, 2017). The extent of lake radiation is influenced by 
several environmental, historical, and evolutionary factors. 
For example, species richness of lake radiations increases with 
lake size (Wagner et al., 2014) and decreases with predation 
pressure (McGee et al., 2020) and with clade age (Seehausen, 
2006). The role of hybridization is increasingly appreciated 
as a catalyst of cichlid diversity (Salzburger, 2018; Svardal et 
al., 2021), including in each of the East African Great Lakes 
(Irisarri et al., 2018; Joyce et al., 2011; Meier et al., 2017; 
Malinsky et al., 2018; Svardal et al., 2020), as well as smaller 
lakes throughout Africa (Martin et al., 2015; Meier et al., 
2019) and Middle America (Kautt et al., 2016). Putting these 
features together, there are myriad co-varying factors that 
nuance the richness of lake assemblages, and the timing by 
which such diversity arises.

In addition to high species richness, lake assemblages 
are known for rapid phenotypic evolution (Hulsey et al., 
2010a) and high phenotypic diversity (Ronco et al., 2021). 
Conspicuously, however, the riverine lineages from which they 
evolved are also ecologically and morphologically diverse 
(Arbour & López-Fernández, 2016; Burress et al., 2017, 
2022; López‐Fernández et al., 2013; Winemiller et al., 1995). 
Although it has yet to be quantified at a broad scale, several 
authors have remarked about the high degree of phenotypic 
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overlap between lake and riverine assemblages (Burress, 2015; 
Seehausen, 2015), suggesting the viability of similar niches in 
both ecosystems. Under classic views of adaptive radiation, 
the invasion of insular environments is thought to prompt 
rapid evolution as species phenotypically specialize to niches 
that were previously unavailable (i.e., the invasion of novel 
“adaptive zones”; Schluter, 2000; Simpson, 1953). At its core, 
this view has two tangible features. First, the geographic tran-
sition could accelerate the rate of evolution (Freckleton & 
Harvey, 2006; Glor, 2010; Harmon et al., 2010; Mahler et 
al., 2010; Yoder et al., 2010). Second, geographic transitions 
may also lead to a shift in the mean phenotype as the lineage 
adapts to different environmental conditions. For example, 
river-to-lake transitions in stickleback result in rapid changes 
in body shape, defense morphology, and feeding morphol-
ogy (Berner et al., 2008; Bolnick et al., 2009; Kaeuffer et al., 
2012; Ravinet et al., 2013). Similarly, coral reefs fueled rapid 
changes in fish form and function as biting emerged as a via-
ble feeding mode (Corn et al., 2022). Despite a clear signal 
of elevated lineage diversification in cichlids (Burress & Tan, 
2017; McGee et al., 2020; Seehausen, 2006), it is uncertain 
how river-to-lake transitions have influenced the rate and 
pattern of phenotypic evolution, and how repeatable these 
features are across independent transitions.

In this study, we comprehensively assess the core “lake 
effect” during the evolutionary history of cichlid fishes across 
different dimensions of the phenotype—head shape as well as 
the functional morphology and mechanical properties of the 
oral jaws—while controlling for alternative sources of rate 
heterogeneity (e.g., lake size, hybridization, clade age, preda-
tion pressure, etc.). We further evaluate the temporal nature 
of the “lake effect” on phenotypic rates by assessing whether 
it manifests immediately (i.e., coincident with the geographic 
transition) or after some degree of evolutionary lag (i.e., 
delayed response). We then compare phenotypes between 
species that occupy rivers and lakes. We hypothesized that 
lakes may provide ecological opportunity via competitive 
release from competitors and/or predators. In this case, we 
expect rates of phenotypic evolution to be elevated relative to 
rivers. Second, we hypothesized that lakes may provide eco-
logical opportunity via access to novel niches. In this case, we 
expect the phenotype, on average, to differ between species 
that occupy lakes and rivers and that lake assemblages have 
expanded phenotypic disparity, both resulting from lacus-
trine species expanding into trait space unoccupied by their 
riverine counterparts. Lastly, we place our results within the 
broader conceptualization of adaptive radiation and in the 
fundamental role of geographic setting in shaping the rate 
and patterns of how such radiation unfolds.

Materials and methods
Specimens and measurements
We examined radiographs of 894 specimens representing 253 
species (one to five individuals per species) representative of 
the group’s ecological and morphological diversity (Burress, 
2015; Kocher et al., 1993; López-Fernández et al., 2012; 
Muschick et al., 2012). Our sampling also includes all major 
lineages distributed in India, Madagascar, the Americas, and 
Africa (except Lake Victoria; Burress & Tan, 2017; Irisarri 
et al., 2018; López-Fernández et al., 2010; Matschiner 
et al., 2017; McMahan et al., 2013). We measured three 
classes of traits: (a) mechanical properties of the oral jaws, 

(b) functional morphological traits of the oral jaws, and 
(c) general characterizations of head shape (Supplementary 
Table S1). Mechanical traits included kinematic transmission 
(KT; Westneat, 1994), kinesis, and kinematic asynchrony 
(KA), which are properties of the oral jaw four-bar linkage 
system. KT, kinesis, and KA were calculated based on meth-
ods by Martinez and Wainwright (2019). See Martinez and 
Wainwright (2019) for detailed descriptions and illustrations 
of how these traits were calculated from the four-bar linkage 
system. KT is the ratio of output rotation of the oral four-bar’s 
maxillary link to input rotation of the mandible (Martinez & 
Wainwright, 2019; Martinez et al., 2018). Higher KT values 
describe jaw systems modified for the transmission of velocity, 
whereas lower values depict jaws modified for the transmis-
sion of force. Kinesis is a measure of mobility of the four-
bar linkage system, which was calculated after 20 °C of input 
rotation. Higher values of kinesis reflect a greater magnitude 
of movement during the feeding motion. KA reflects the 
degree of temporal asynchrony of the four-bar shape during 
motion (i.e., deviation from a linear motion—approximating 
the efficiency of the feeding strike; Martinez & Wainwright, 
2019). Lower KA values reflect a more linear (i.e., efficient) 
feeding motion. These mechanical properties characterize 
the motion during feeding and are known correlates of jaw 
protrusion (Hulsey et al., 2010b) and feeding ecology in 
fishes (Burress et al., 2020; Price et al., 2011). These traits 
are analyzed separately from other traits in part because they 
are ratios (KT and KA) and are on different scales than the 
remaining traits (i.e., residuals; see below). Functional mor-
phological traits included: lengths of the dentigerous arm of 
the premaxilla, ascending process of the premaxilla, maxilla, 
and mandible (articular and dentary). Shape traits included: 
head length, head depth, and snout length. The head length 
was measured as the distance from the anterior tip of the 
premaxilla to the joint between the neurocranium and spine. 
Head depth was measured as the vertical distance through 
the orbit. Snout length was measured as the linear distance 
between the anterior tip of the premaxilla to the center of the 
orbit. Shape traits are generally multifunctional, relating to 
various dimensions of fish biology, including feeding ecology, 
microhabitat use, and locomotion (Webb, 1984; Winemiller 
et al., 1995). Measurements were taken from images using the 
measure function in tpsDig2 (Rohlf, 2006) or were measured 
directly from specimens with digital calipers. Standard length 
was measured as the linear distance between the anterior tip 
of the premaxilla to the posterior edge of the hypural plate. 
Data are available on the Dryad Digital Repository (https://
doi.org/10.5061/dryad.fbg79cp1n).

We then classified species based on the ecosystem they prin-
cipally inhabit. The discrete nature of lakes facilitated a strict 
definition of associated species. Species endemic to lakes or 
otherwise limited to only immediate surrounding outflows 
from lakes were classified as “lake” (109 species). Given the 
more continuous and labile nature of rivers, this category 
was more inclusive, reflecting the broad range of flowing and 
stagnant water conditions that occur in rivers. Species that 
occur principally in rivers, including a few widespread species 
that broadly occur in rivers, lakes, and other types of habi-
tats (e.g., marshes, etc.) were classified as “river” (144 spe-
cies). Sampled riverine species are distributed in the Amazon, 
Orinoco, La Plata, Congo, Nile, and Zambezi Rivers, among 
others, whereas sampled lake species are distributed in Lakes 
Tanganyika, Malawi, Victoria, George, Albert, Barombi Mbo, 
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Bermin, Ejagham, Nicaragua, Xiloá, and Apoyo. This sam-
pling includes 10 cases in which the lineage subsequently 
radiated within the lake and seven cases in which it did not.

Phylogenetic comparative methods
For phylogenetic comparative methods, we used a recent 
phylogeny (McGee et al., 2020) with broad sampling across 
the Cichlidae and strategically utilized constraints based on 
recent phylogenomic hypotheses (e.g., Burress et al., 2018; 
Irisarri et al., 2018; McGee et al., 2016). Analyses in R were 
performed with version 4.2.1 (R Core Team., 2022). For 
linear traits (functional and shape traits detailed above), 
we ln-transformed each measurement and calculated phy-
logenetic residuals with Brownian motion (BM) by regress-
ing each trait against ln-transformed standard length using 
the phyl.resid function in the R package phytools (Revell, 
2012). These size-relative traits were then used as input for 
subsequent analyses. For each class of traits, we calculated 
morphological disparity of lake and riverine cichlids using 
the disparity function implemented in geiger R package 
(Harmon et al., 2008). During this procedure, disparity was 
calculated as the Euclidean distance among all pairs of data 
points. Owing to the overwhelming evidence that fish trait 
evolution is often best fitted by Ornstein-Uhlenbeck (OU) 
models of evolution (López-Fernández et al., 2013; Burress 
et al., 2019; Friedman et al., 2016; Larouche et al., 2022; 
Muñoz et al., 2018; Muschick et al., 2014), we employed 
evolutionary model selection. We tested the effect of envi-
ronment (river vs. lake) on head shape, functional morphol-
ogy of the jaws, and mechanical properties of the jaws using 
mvMORPH (Clavel et al., 2015, 2019), which uses penalized 
maximum likelihood during model fitting. We fitted three 
alternative models: Brownian motion (BM1), a single optima 
OU (OU1), and a multi-optima OU (OUM) model in which 
river- and lake-dwelling cichlids have different trait optima. 
Each class of traits was analyzed in a multivariate framework 
(as defined above). To assess the relative fit of the models, 
we used a modified Akaike Information Criterion (AICc) that 
incorporates a correction for small sample size (Burnham & 
Anderson, 2002; Burnham et al., 2011). To distinguish model 
fits, we use the criterion that more complex models must 
have AICc scores > 2 less than simpler models to consider 
the fit improvement significant (Burnham & Anderson, 2002; 
Burnham et al., 2011; Butler & King, 2004). Otherwise, we 
default to simpler models when appropriate. These analyses 
were repeated across 1000 stochastic character histories esti-
mated using the make.simmap function implemented in phy-
tools (Revell, 2012) to account for regime uncertainty (for 
the OUM model). During the estimation of the stochastic 
history of ecosystem (river and lake), we used a transition 
model in which all rates are different (“ARD”) and set the 
root state as riverine (Burress & Tan, 2017; Salzburger et al., 
2005; Seehausen, 2015). To visualize the phenotypic data, we 
employed principal component analyses using the prcomp 
function in R.

Second, we tested for a “lake effect” on the rate of trait evo-
lution. To do this, we estimated the environment-dependent 
rates of multivariate evolution for each class of traits using 
MuSSCRat (May & Moore, 2020). This method is an exten-
sion of BM, but with several of its core assumptions relaxed: 
the model jointly estimates the evolutionary history of the 
discrete and continuous characters, permits the continuous 
characters to have different rates, dynamically estimates the 

correlation matrix, and incorporates background rate varia-
tion (i.e., avoiding attributing all rate variation to the discrete 
character). Since rates are estimated for every branch, the 
model allows rates to vary through time and across the phy-
logeny (major assumptions of BM). As described above, rates 
of cichlid speciation, and presumably phenotypic evolution, 
are likely nuanced among lakes by covarying factors (Burress 
& Tan, 2017; Seehausen, 2006). For example, hybridization 
between divergent riverine lineages may have spurred excep-
tionally rapid adaptive radiation in some lake assemblages 
(Joyce et al., 2011; Meier et al., 2017, 2019). By accounting 
for background rate heterogeneity, we can tease apart these 
idiosyncrasies of individual lake assemblages and home in 
on a core “lake effect” on cichlid phenotypic evolution. We 
let state changes in each direction (i.e., lake-to-river, river-
to-lake) have different transition rates while estimating the 
stochastic history of the discrete character (i.e., freeK model). 
The Markov chain Monte Carlo was run for 100k genera-
tions with 10% burnin. We ran MuSSCRat using a random 
local clock (RLC) and uncorrelated lognormal clock (UCLN) 
(May & Moore, 2020) to assess the influence on the posterior 
probability that the rates were dependent on the environment 
(the character being either “river” or “lake”). Rates estimated 
with the RLC model have phylogenetic structure, whereas 
rates estimated with the UCLN model do not. We repeated 
analyses with different priors on the number of rate shifts 
(i.e., 25, 50, and 75 shifts) to evaluate its impact on posterior 
estimates of key parameters, including the number of transi-
tions between environments, number of rate shifts, posterior 
probability that the rates were dependent upon the environ-
ment, and lake- and river-specific evolutionary rates.

Owing to the diversity of cichlids and that we sampled only 
a fraction of the described species, we evaluated the proba-
bility that our sampling could lead to type-I error. To do so, 
we simulated 100 datasets across the full McGee et al. (2020) 
phylogeny (1712 species) using a Brownian motion process 
with the fastBM function employed in phytools (Revell, 2012). 
To inform the simulated data, we used the mean rate from the 
observed data (σ2 = 0.62), and set variance (α = 0.023) and 
bounds (−0.515, 0.428) using a randomly chosen observed 
trait (i.e., snout length). We then pruned these datasets to 
match our empirical taxon sampling (253 species) and used 
these reduced simulated datasets to test for significant dif-
ferences (i.e., type-I error) with MUSSCRat. Another con-
sideration is that evolutionary rates may simply scale with 
time (Gingerich, 1983; Harmon et al., 2021). In other words, 
younger clades may be inferred to have faster evolutionary 
rates. Since such patterns may be artifactual (i.e., non-biolog-
ical), we directly assessed time-scaling by calculating mean 
rates for 29 non-overlapping clades that range in age from 
1.1 to 68.2 My (Supplementary Table S2). We then regressed 
the observed and simulated clade rates against clade age to 
assess time-scaling. If, for example, the clade rates inferred 
from BM-simulated (i.e., constant rate) data scaled negatively 
with clade age, then the observed elevated rates for the gen-
erally younger lake lineages could be artifactual rather than 
biological.

To evaluate lake-specific effects, we estimated the 
branch-specific rates of phenotypic evolution with a second 
model that was naive of the discrete character history (all 
other priors and parameters as above; Burress et al., 2020). 
We summarized the magnitude of rate shifts as the rate ratio 
between the mean rate of the lake branch (see below) divided 
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by the mean rate of the founding riverine branch (i.e., the 
lake-specific background rate). We specified the lake branches 
in two ways. First, we defined an immediate lake effect using 
the branch coincident with the river-to-lake transition (i.e., 
the rootward branch relative to the oldest node fully resolved 
as the lake state). Second, we also considered a delayed lake 
effect using up to two subsequent (tipward) branches (mod-
ified from Burress & Tan, 2017; Supplementary Figure S1). 
These rate ratios allow us to evaluate heterogeneity in the 
magnitude of rate shifts associated with river-to-lake transi-
tions as well as the relative timing of the rate shift.

Results
We detected 20.2 state changes on average, with 13.4 being 
transitions from river-to-lake and 6.8 being transitions from 

lake-to-river (Figure 1). Most time was spent in the ancestral 
river state, 76.4%, on average. Riverine cichlids had consid-
erably higher disparity in head shape (DR = 1.48; Figure 2), 
occupying the phenotypic extremes in terms of small, elon-
gate heads and deep, robust heads (Figure 2A). River and 
lake ecosystems had different evolutionary optima in terms 
of head shape (Table 1), which was principally driven by 
head depth (Supplementary Table S3). Notably, head length 
had nearly identical evolutionary optima (Table 1). Riverine 
cichlids exhibited greater overall disparity in functional jaw 
morphology (DR = 1.21), notably occupying a unique region 
of morphospace associated with large jaws with a long 
ascending process (Figure 2B). River and lake ecosystems 
had different evolutionary optima in their jaw functional 
morphology (Table 1). Riverine species tended to have larger 
jaws, with a longer ascending process (Supplementary Table 

Lake Apoyo

Lake Xiloa
Lake Tanganyika

Lake Malawi

Lake Barombi Mbo

Lakes

Lake Nicaragua

Lake Ejagham
Lake Bermin
Lake Victoria
Lake Albert
Lake George

Ecosystem
Lake
River

Figure 1. Geographic transitions between river and lake ecosystems during the evolutionary history of cichlid fishes. Pies at nodes depict the probability 
of each state. Dots around the tips depict the ecosystem (inner) and lake (outer) assignment for each species. Illustrations depict the oral jaws of an 
adjacent species.
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S3). Lacustrine cichlids had nominally higher disparity in 
mechanical properties of the jaws than their riverine counter-
parts (disparity ratio; DR = 0.94), with near complete overlap 
in morphospace (Figure 2C) and river and lake ecosystems 
shared a single evolutionary optimum for mechanical proper-
ties of the jaws (Table 1 and Supplementary Table S3).

Rates of shape, functional, and mechanical evolution were 
faster in lakes than rivers (all models posterior probability; 
PP = 1.0; Figure 2D–F). Shape, functional, and mechanical 
traits evolved 12.8, 10.6, and 7.7-fold faster in lacustrine 
species than their riverine counterparts, respectively (Figure 
2D–F). These differences in evolutionary rates were con-
sistent across models with different priors (Supplementary 
Figure S2) and a different underlying model (Supplementary 
Figure S2). Simulated data did not produce false positives, 
indicating that these results were not an artefact of sam-
pling (all PP < 0.10). Considering that lake assemblages were 

disproportionately under sampled, our results likely provide 
a conservative estimate of the lake effect on evolutionary 
rates. Although the observed clade rates scaled negatively 
with clade age, clade rates inferred from BM-simulated data 
exhibited no time-scaling (Figure 3; Supplementary Table S3). 
This result indicates that the inferred evolutionary rates for 
the lake radiations is not an artefact of their younger ages 
relative to riverine lineages.

Rate shifts across river-to-lake transitions varied in their mag-
nitude and timing (Figure 4). Seven of the 10 lakes had an associ-
ated rate shift (Figure 4). Cases in which there were no rate shifts 
associated with a river-to-lake transition were generally due to 
evolutionary rates already being rapid in the founding riverine 
lineage (e.g., Lake Ejagham) or because rates were not partic-
ularly high throughout the lake (e.g., Lake Tanganyika). River-
to-lake transitions that did not result in a radiation also did not 
result in elevated evolutionary rates (Figure 4), suggesting that 

Figure 2. Dimensions of oral jaw diversity in cichlid fishes: general head shape, functional morphology of the jaws, and mechanical properties of the 
jaws across 253 riverine and lacustrine cichlids (A). Descriptions along the axes depict the loadings along each PC. Ellipses depict the 95% CI for each 
ecosystem type. Each point represents a species. Ecosystem-specific rates of phenotypic evolution for each dimension of phenotypic diversity (B).

Table 1. Evolutionary model fitting for head shape, jaw functional morphology, and mechanical properties of the jaws across river- and lake-dwelling 
cichlid fishes.

Class of traits Model logLikelihood AICc ∆AICc Prop.

Shape BM1 −263.97 546.18 372.50 0.00

OU1 468.76 −906.87 11.81 0.00

OUM 477.80 −918.68 0.00 1.00

Functional BM1 −483.20 994.83 1458.21 0.00

OU1 250.11 −451.00 12.38 0.00

OUM 260.54 −463.38 0.00 1.00

Mechanical BM1 859.51 −1701.03 1268.61 0.00

OU1 1500.14 −2969.64 0.00 0.46

OUM 1503.61 −2970.30 0.66 0.54

Note. Brownian motion (BM1), single-optimum (OU1) and multiple optima (OUM) Ornstein-Uhlenbeck models, Akaike Information criterion corrected 
for small sample size (AICc), proportion of the stochastic character histories for which the model was best fit (Prop.) The best-supported model is indicated 
in bold.
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the lake effect results from cladogenesis rather than anagene-
sis. Interestingly, the magnitude of the initial rate shifts (2- to 
10-fold) rarely matched the magnitude of the global “lake effect”  
(Figure 4), suggesting that a significant fraction of the “lake 
effect” accumulates well after the river-to-lake transition.

Discussion
Colonization of isolated ecosystems is often a defining 
ingredient of adaptive radiation (Gavrilets & Losos, 2009; 

Schluter, 1988; Seehausen, 2006), but how such transitions 
impact phenotypic evolution at macroevolutionary scales is 
less well understood. Here, we affirm that lake colonization 
catalyzes cichlid evolution, accelerating both morphological 
and mechanical evolution 8- to 13-fold relative to riverine 
radiations. Nonetheless, as we unpack below, the signature 
of the “lake effect” is nuanced, both in the relative magni-
tude of rate change as well as the timing of rate shifts (i.e., 
whether it occurred immediately upon colonization, or fol-
lowing a lag period). Phenotypic evolution accelerated only 

Figure 3. Time-scaling of phenotypic rates across 29 non-overlapping clades distributed across the cichlid phylogeny. The y-axis depicts the mean clade 
rates, whereas the x-axis depicts the clade ages. Each point represents a clade. Note that clade rate heterogeneity increases near the present in the 
simulated data, but the rates do not scale with clade age, as with the observed data.
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Figure 4. The magnitude (n-fold) of shifts in the rate of phenotypic evolution (mean ± 95% CI) across river-to-lake transitions. Lineages that 
subsequently radiated are listed separately by name. Lineages that did not radiate are summarized together as “non-radiating.” The “lake effect” 
depicts the overall magnitude of rate change from MuSSCRat analyses. Note that the lake-specific rate ratios are calculated using the coincident and (if 
informative) immediately descending (i.e., delayed) branches relative to the founding riverine lineage, thereby homing in on the rather immediate impact 
of the river-to-lake transition, whereas the calculation of the “lake effect” rate ratio (shaded in red) involves all branches regardless of their proximity to 
transitions.
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in lacustrine lineages that subsequently radiated, meaning 
that the “lake effect” is driven by cladogenesis rather than 
anagenesis. Notably, the magnitude of the “lake effect” is 
distinctly lower for jaw mechanical properties than for their 
underlying morphological traits. The diffused “lake effect” on 
mechanical traits may be a consequence of many-to-one map-
ping in which different morphological combinations converge 
on shared mechanical outputs (Muñoz, 2019; Wainwright et 
al,. 2005) (Supplementary Figure S3). Considering that river 
and lake cichlid jaws exhibit near complete overlap in their 
mechanical properties (Figure 2) and that many mechan-
ically viable jaw functions are not realized (Martinez & 
Wainwright, 2019), both lacustrine and riverine lineages may 
have thoroughly explored the mechanical diversity feasible 
for the cichlid oral jaw system and its associated ecological 
constraints (e.g., dietary niche availability).

Lakes as motors for rapid phenotypic evolution, 
but not enhanced phenotypic novelty
Geographic transitions can catalyze adaptive radiation by 
providing release from ancestral predation and competition 
and/or by enhancing access to new or relatively untapped 
resources (Schluter, 1988, 2000; Simpson, 1953; Stroud & 
Losos, 2016), in turn facilitating rapid trait evolution as spe-
cies specialize to novel niches. Biotic and abiotic factors likely 
work in concert to drive the “lake effect” of rapid pheno-
typic evolution observed in cichlids. First, the absence of top 
predators in recently colonized East African lakes likely facil-
itated the rapid speciation of those assemblages (McGee et 
al., 2020). Reduced predation enhances mobility and resource 
access that would otherwise be constrained by anti-predation 
behavior (Schluter, 1988).

In addition to predator release, lakes offer an expanded 
benthic-pelagic axis, likely facilitating more fine-scale niche 
partitioning and phenotypic specialization along the depth 
gradient (Friedman et al., 2020; Schluter, 1993; Seehausen 
& Wagner, 2014). In the terrestrial realm, for example, taller 
trees permit expanded niche partitioning by forest organisms 
(Leahy et al., 2021; Lister, 1976). Of course, many riverine 
fishes also diversify along the depth axis (Burress et al., 2017, 
2022; Hollingsworth et al., 2013), but lakes tend to be deeper, 
often considerably more so, than rivers (exceptions include 
the vastly deep Congo River). Morphological and physiolog-
ical adaptation of the jaws, fins, and digestive system accom-
pany specialization along the depth gradient (Cooper et al., 
2010; Elmer et al., 2014; Hulsey et al., 2013; Wagner et al., 
2009). Many cichlid lineages, for example, are functionally 
aligned with substrate use, often specialized for grazing algae 
from rocks (Rüber et al., 1999), where they partition foraging 
sites based on depth (Albertson, 2008) and the rock surface 
angle (Genner et al., 1999). Certainly, this specialization is 
also present in riverine cichlids, evolving coincident with the 
same specialized dentition, but does not appear to be nearly 
as widespread as in lake assemblages (Burress et al., 2020; 
Casciotta & Arriata, 1993; Říčan et al., 2016). Similarly, 
planktivory is relatively common in lakes, including wide-
spread species that occur in both lakes and rivers (Fryer & 
Iles, 1972), but this feeding ecology is comparatively limited 
in species found only in rivers (Winemiller et al., 1995). These 
asymmetries likely reflect the utility of an expanded depth 
dimension afforded by lakes (McGee et al., 2020).

While the expanded depth gradient might permit enhanced 
fine-scale specialization, it does not offer access to unique 

resources that enhance phenotypic disparity or favor the evo-
lution of novel phenotypes relative to ancestral riverine lin-
eages. In fact, both the most elongate and most deep-headed 
species occur in rivers, suggesting that, if anything, riverine 
species specialize (on both ends of the shape continuum) in 
ways that their lake counterparts do not. Deep bodies and 
short, stout caudal peduncles, and by extension deep heads, 
are associated with enhanced maneuverability (Webb, 1984), 
and may be particularly useful when navigating complex 
habitats at slow speeds. Certainly, lakes can also be spatially 
complex: East African Great Lakes, for example, have com-
plex rocky reefs along their shores, which provide shelter, a 
substrate for food (e.g., algae), and often support high local 
cichlid diversity (Genner et al., 1999). A large proportion 
of these lakes, however, are relatively homogenous non-reef 
habitat comprising sandy substrate and open water. We argue 
that rivers provide many of the same habitats as lakes, as well 
as more complex and continually flowing habitat. This spatial 
discrepancy may have favored the evolution of morphologies 
associated with higher maneuverability (e.g., deep, short bod-
ies [and heads], and short snouts; Webb, 1984), as observed 
in Symphysodon, Pterophyllum, and Mesonauta, fishes that 
occupy branches and wood tangles in stagnant portions of the 
Amazon River (Crampton, 2008; Pires et al., 2015). By con-
trast, fast water flow likely favored the evolution of elongate 
forms such as those found in the rapids of the Congo River 
(e.g., Gobiocichla, Teleogramma, and some Steatocranus; 
Alter et al., 2017; Schwarzer et al., 2012) and fluvial por-
tions of the Amazon and La Plata Basins in South America 
(Astudillo-Clavijo et al., 2015; Burress et al., 2022; Varella 
et al., 2016). These factors likely contributed to the river and 
lake environments having different evolutionary optima for 
head shape and jaw functional morphology (Table 1), despite 
considerable overlap in morphospace. It is also noteworthy 
that similar phenotypes can have different functions in rivers 
and lakes. For example, low drag coefficients associated with 
elongate bodies may facilitate maintaining position in flowing 
water (rivers) or high-speed swimming in the pelagic zone of 
a lake (Webb, 1984; Hendry et al., 2011).

In this context, rivers differ from lakes in two important 
ways. First, their flowing nature means that they are labile 
and more prone to exchange with the surrounding terres-
trial environment. For example, flooding provides periodic 
structural rearrangement of habitat and expands the avail-
able habitat into the floodplain. Second, the benthic-pelagic 
axis is physically constrained in rivers such that more of the 
water column is in immediate proximity to the benthos and 
structural habitat such as woody material and rocks. Flow 
imposes selection on morphology associated with swimming 
performance in fishes (Langerhans, 2008). For example, elon-
gate phenotypes are suitable for steady-swimming through 
open water provided by lakes, and short, stout phenotypes 
are suitable for unsteady-swimming and complex maneuvers 
necessary to interact with structurally complex habitats that 
are prominent in rivers (Webb, 1984). Together, these fac-
tors help explain the greater head shape disparity observed 
in riverine cichlids (Figure 2). Although the more complex 
nature of riverine habitats may have permitted an expanded 
spectrum of phenotypes, the more heterogeneous conditions 
may have diluted selection necessary to elicit rapid evolu-
tion. In lakes, by contrast, reduced predation coupled with an 
expanded depth gradient (McGee et al., 2020) likely allowed 
the rapid, iterative proliferation of ecological niches, without 
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a simultaneous shift into novel regions of phenotype space. 
Such iterative evolution often results when a core set of phe-
notypes are widely adaptive across a radiation (Frédérich et 
al., 2013; Huie et al., 2021; Poe & Anderson, 2019; Slater, 
2015; Van Valkenburgh, 1991).

A conspicuous feature of the “lake effect” is that a small 
fraction of its overall magnitude is attributable to the coinci-
dence or immediate aftermath of the river-to-lake transition 
(Figure 4). This result indicates that most of the “lake effect” 
is driven by subsequent and ongoing phenotypic evolution 
(i.e., nearer the tips). One possibility is that lineages require 
time to phenotypically capitalize on the ecological opportu-
nity afforded by lakes. In other words, whereas speciation and 
coloration can respond quickly to lake colonization (Burress 
& Tan, 2017; Seehausen, 2006; Wagner et al., 2012), adapta-
tion of the jaw system and its functional properties may arise 
more slowly. For example, since adaptation often unfolds in a 
sequence (Hulsey et al., 2017; Kocher, 2004; Muschick et al., 
2014; Ronco et al., 2021), the macroevolutionary signature 
of the “lake effect” protracts well beyond the initial coloni-
zation event.

Innovations do not explain evolutionary differences 
between riverine and lacustrine radiations
An alternative catalyst of adaptive radiation often cited in the 
literature is the origin of innovations that enhance functional 
versatility and capacity (Burress & Muñoz, 2022; Liem, 
1973; Simpson, 1953; Heard & Hauser, 1995; Hunter, 1998; 
Stroud & Losos, 2016; Wainwright et al., 2012). Cichlids 
(both lacustrine and riverine) possess many such innovations, 
including specialized dentition and exaggerated snouts for 
scraping algae from rocks (Conith et al., 2018, 2019; Rüber et 
al., 1999), hypertrophied lips that facilitate feeding from crev-
ices and interstitial rock gaps (Lukas et al., 2015), and mouth 
brooding, which increases mobility during parental care 
(Goodwin et al., 1998), among others. These innovations are 
perhaps best known from lake radiations, but most are also 
present in riverine lineages. Examples include specialized tri-
cuspid dentition (Casciotta & Arriata, 1993), hypertrophied 
lips (Lucena & Kullander, 1992; Reis & Malabarba, 1987), 
and mouth brooding (Goodwin et al., 1998). Other innova-
tions, like egg spots (Hert, 1989; Salzburger et al., 2005) are 
not shared among all lake-dwelling cichlids. Therefore, none 
of these innovations (at least on their own) suitably explain the 
rapid evolution associated with lake assemblages, although 
they may interact with lake features, like niche partitioning 
across depth, that magnify their utility. For example, hyper-
trophied lips are conspicuously associated with rapid sym-
patric speciation in lacustrine cichlids (Colombo et al., 2013; 
Elmer et al., 2010; Ford et al., 2016; Machado‐Schiaffino et 
al., 2017) as well as other lake-dwelling fishes (de Graaf et al., 
2008; Pfaender et al., 2016). In lakes, hypertrophied lips are 
linked to divergence along the depth gradient because their 
origin is often paired with a more pelagic form during eco-
logical speciation (Elmer et al., 2010; Machado‐Schiaffino et 
al., 2017). Hypertrophied lips, however, also arose in close 
association with rapid parallel adaptive radiation in river-
ine cichlids (Burress et al., 2018, 2022) as well as riverine 
barbs (Levin et al., 2020), although the ecomorphological 
link differs, as the innovation usually originates within a 
largely benthic clade (Burress et al., 2018, 2022; Levin et al., 
2020). Therefore, innovations appear to impart functional 
and ecological versatility upon lineages (Burress et al., 2020; 

Burress & Muñoz, 2021; Conith & Albertson, 2021; Ronco 
& Salzburger, 2021), but do not necessarily result in elevated 
rates of phenotypic evolution over macroevolutionary scales 
(Larouche et al., 2020, 2022; Seehausen, 2006). Interactions 
between existing functional innovations (e.g., pharyngeal 
jaws) and subsequent geographic transitions remains a fruit-
ful line of inquiry (e.g., Wagner et al., 2012).

Decoupling of tempo and mode of trait evolution 
during adaptive radiation
Cichlids exhibit ecosystem-moderated decoupling in the rate 
and state of phenotypic evolution. River-to-lake transitions 
elicit a unified response of faster rates of evolution across 
multiple dimensions of the phenotype (i.e., head shape, jaw 
functional morphology, mechanical properties of the jaws). By 
contrast, there is no unified impact on the state of the pheno-
type across these same dimensions. While head shape and jaw 
morphology exhibit separate evolutionary optima for river 
and lake ecosystems, the mechanical properties of the jaws do 
not (Table 1). Further, not all head shape traits have different 
optima (Supplementary Table S3). These results suggest that 
rivers and lakes have a nuanced effect on adaptive evolution, 
with the outcome dependent on the traits in question. Lake 
assemblages exhibit largely the same trait values as well as 
similar (or a subset of) diversity represented by ancestral riv-
erine lineages (Figure 2). While phenotypic evolution in lakes 
is rapid, it largely occurs via macroevolutionary recycling of 
phenotypes already present in river lineages. In this regard, 
cichlids join other canonical adaptive radiations—anoles, 
vangas, and labrids—that exhibit decoupled rate and state of 
phenotypic evolution based on geographic setting (Jønsson et 
al., 2012; Pinto et al., 2008; Price et al., 2011; Salazar et al., 
2019). Decoupling of rate and state can also manifest among 
lineages that do not differ in geographic setting, reflecting 
evolutionary idiosyncrasies or lineage-specific constraints or 
innovations (e.g., Sidlauskas, 2008). Since lakes promote ele-
vated rates, but not different phenotypes, river-to-lake transi-
tions likely provide ecological release without also affording 
access to novel resources.

Beyond detecting the presence of decoupled rate and state, 
there is much that can be learned from dissecting how such 
decoupling unfolds and connecting the emergent pattern 
to the process(es) that might underlie it. Different underly-
ing mechanisms (including genetic, mechanical, ecological, 
and behavioral features) can disrupt relationships between 
the rate and state of phenotypic evolution. Lineage-specific 
variation in genetic constraints can limit the range of poten-
tial phenotypes (both in mean and disparity), without nec-
essarily also inducing shifts in evolutionary rate: evolution 
in certain G-matrix characteristics, for example, impacted 
ecomorph-specific phenotypic evolution in Caribbean anoles 
(McGlothlin et al., 2022). Greater time for divergence in 
older lineages can enhance disparity without a concomitant 
signature on evolutionary rate (Ricklefs, 2006). Theory posits 
some degree of coupling between the rate and state of phe-
notypic evolution during adaptive radiation, namely rapid 
phenotypic expansion (Simpson, 1953), yet adaptive radia-
tion clearly proceeds with varying degrees and flavors of rate-
state decoupling. This heterogeneity likely reflects a milieu of 
potential driving factors, including clade-specific innovations 
(Sidlauskas, 2008), geographic transitions (Salazar et al., 
2019; Evans et al., 2019; this study), or both (Jønsson et al., 
2012), as well as variable underlying mechanisms—ecological 
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release (Pinto et al., 2008), mechanical, life history, or genetic 
constraints (Castiglione et al., 2018; Schluter, 1996b; Stayton 
et al., 2018), or variance in time for evolution (Friedman et 
al., 2016). Despite the prevalence of such decoupling across 
diverse radiations, the relative prominence of different mech-
anisms and potential macroevolutionary outcomes remains 
unclear. We propose that unpacking how and why these phe-
nomena arise is a fruitful framework with which to study 
phenotypic evolution and adaptive radiation.
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